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The acoustic radiation from circular cylindrical shells is of fundamental and applied
interest. However, in previous studies, in order to obtain an analytical solution for practical
applications, the cylindrical shell is normally assumed in"nite in length. Obviously, this
assumption would cause error in the analysis for a "nite length circular cylindrical shell,
especially as the length of the shell becomes comparable to the radius. In this study, the end
e!ects of the length and the boundary conditions on the acoustic behavior of a circular
cylindrical shell is discussed. It is found that the boundary conditions would a!ect the modal
radiation e$ciencies very much in the subsonic region. However, it has been shown that
there exists a condition under which the end e!ects could be neglected for modal radiation
e$ciencies so that the in"nite model could be used with fair accuracy. Also, it is found that if
the length (l ) of a circular cylindrical shell with radius a and thickness h is much greater than
2naJa/h, beam-bending modes would dominate the vibration response below the cut-o!
frequency of the second circumferential mode and the cylindrical shell can be treated as
a beam with reasonable accuracy.
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1. INTRODUCTION

Cylindrical shells are one of the most widely used structures in industries, for example, the
casing of small- and medium-sized electric machines, and pipes with relatively small radius
used in various constructions. Since in engineering all these cylindrical shells are used with
"nite length and various end conditions, the corresponding acoustic behavior is therefore of
particular interest to noise control engineers. The early contribution to the acoustic
radiation from "nite length cylindrical shells was made by Williams [1] who analyzed the
radiation of "nite length cylinders with a uniform radial vibration velocity pro"le and
compared the sound "eld with that of the in"nite length model. Williams [1] found that
in"nite length models may overestimate the acoustic radiation from "nite length cylinders,
and the error would increase as the length of the cylinder becomes shorter. Then, Schenck
[2] presented a surface Helmholtz integral formulation for obtaining approximate solutions
of acoustic radiation problems for an arbitrary surface, which improved the accuracy of
William's results in the axial direction. In order to take the reaction of the #uid inside the
cylindrical shell into account, Sandman [3] examined the model of a ba%ed "nite length
cylindrical shell. It was found that the model is a reasonable approximation in determining
the acoustic radiation from the surface of "nite length cylindrical shells, and is applicable to
022-460X/01/150825#14 $35.00/0 ( 2001 Academic Press
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arbitrary radial vibration distribution. Based on this model, Stepanishen [4] discussed the
radiation impedance of di!erent vibration modes of a "nite length cylindrical shell, and Zhu
[5] examined the &&relative sound intensities'' for di!erent vibration modes. Also,
Stepanishen [6] and Laulagnet et al. [7] investigated the e!ects of #uid on the acoustic
radiation of "nite length cylindrical shells. However, since most of the studies chose simply
supported ends to facilitate their analyses [4}8], the e!ects of boundary conditions on the
acoustic radiation are still not very clear.

In engineering, the in"nite length model is often adopted in dealing with the acoustic
problems associated with "nite length cylindrical shells. This is because the corresponding
analytical solutions are easy to obtain and apply. For example, Jeyapalan and Richards [8]
developed a simple expression for the modal averaged radiation e$ciency of a circular
cylindrical shell in beam-bending motion by using an in"nite length model. However, the
end e!ects would become more important as the length becomes shorter and comparable to
the radius. Under this condition, the vibration behavior of a circular cylindrical shell could
change dramatically with frequency and in"nite length models would not be valid. Recently,
Wang and Lai [9] derived the modal-averaged radiation e$ciency for a "nite length
circular cylindrical shell and showed that it can be modi"ed signi"cantly by the boundary
conditions. Their theoretical results have been veri"ed by acoustic boundary element
calculations and experiments. It would be bene"cial to determine a condition for which the
results of in"nite length models can be employed with reasonable accuracy.

The objective of this study was, therefore, to investigate the e!ects of the boundary
conditions and length on the modal radiation e$ciency of a "nite length circular cylindrical
shell. The condition for which the corresponding in"nite length model could apply will be
determined. Also, the condition under which a circular cylindrical shell could be treated like a
beam in bending motion will be established.

2. THE MODAL RADIATION EFFICIENCY OF FINITE LENGTH CIRCULAR
CYLINDRICAL SHELLS

Modal radiation e$ciency is commonly used to characterize the acoustic radiation
properties of structures. According to Wang and Lai [9], the modal radiation e$ciency
associated with a vibration mode (m, n) of a "nite length circular cylindrical shell with
arbitrary boundary conditions can be predicted by using the following equation:
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where m is the mode number in the axial direction, n is the mode number in the
circumferential direction, a, l are the radius and the length of the cylindrical shell,
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mode shape of the cylindrical shell in the wavenumber domain obtained by applying the
spatial Fourier transform to the mode shape c

m
(z) in the axial direction. Although equation

(1) was derived using a ba%ed cylindrical shell model, it has been shown [9] that the
modal-averaged radiation e$ciency obtained by using this equation compared reasonably
well with the experimental and boundary element results of the corresponding unba%ed
cylindrical shell. For cylindrical shells simply supported at both ends, the mode shape in the
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axial direction is described exactly by

c
m
(z)"sinA

mn
l
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Thus, the modal radiation e$ciency of a simply supported circular cylindrical shell for
mode (m, n) can be derived from equations (1) and (2) as [9]
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For other boundary conditions, it has been demonstrated [10] that the mode shapes of
cylindrical shells in the axial direction can be determined numerically with good
approximations by using the beam functions. For example, the beam functions for the
clamped}clamped, and free}free boundary conditions are [11]
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respectively. Thus, by using equation (1) and the corresponding beam functions (such as
equations (4) and (5)), the e!ects of di!erent boundary conditions on the modal radiation
e$ciencies can be assessed.

Figure 1 shows the modal radiation e$ciencies of various vibration modes of a simply
supported circular cylindrical shell with length to radius ratio (l/a) of 3. It can be seen that,
like #at plates, all vibration modes would become supersonic when the acoustic
wavenumber k is greater than the structural wavenumber k

s
, and the corresponding modal

radiation e$ciency is of the order of unity. When the vibration modes are subsonic, the
modal radiation e$ciencies are less than 1. This result supports the use of the index D¸ for
determining the acoustic behavior of a vibration mode [9]. However, one should bear in
mind that, unlike #at plates, cylindrical shells do not have a unique &&critical frequency'' for
all vibration modes, as discussed in reference [9]. Furthermore, it can be seen from Figure 1
that in the subsonic region, for a given axial mode number m, the modal radiation e$ciency
is quite complex as the circumferential mode number n increases. In the very low subsonic
region, the modal radiation e$ciency decreases as n increases but the opposite trend is
observed in the higher subsonic region. Thus, the modal radiation e$ciencies of higher



Figure 1. Modal radiation e$ciencies of a circular cylindrical shell: l/a"3. (a)**, p(2, 1); ) ) ) ) ), p(2, 2); - - - - - -,
p(2, 3); - - - - - - p (2, 4); }} } } p (2, 5). (b) ** p (1, 2); ) ) ) ) ) p (2, 2); - - - - - - p (3, 2); } } } } p (4, 2); } } } } p (5, 2).
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order modes are not always less than those of the lower order modes. This result is quite
di!erent from plates for which the higher order modes would have lower modal radiation
e$ciencies in the subsonic region due to less radiation areas.

3. VALIDITY OF USING AN INFINITE LENGTH MODEL

The e!ect of the length of cylindrical shells on the modal radiation e$ciency is always of
interest to noise control engineers. In many textbooks on acoustics, the modal radiation
e$ciencies of a cylindrical shell are analyzed by assuming in"nite length so that a simple
expression can be obtained. Therefore, it would be helpful to obtain a condition under
which the in"nite length model can be used for "nite cylindrical shells without much error.

For convenience, a cylindrical shell with two ends simply supported is considered. For an
in"nite length cylindrical shell, the modal radiation e$ciency has a simple, closed form as
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given by [12]
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z
. If one applies equation (6) to calculate the modal radiation e$ciency

of "nite length cylindrical shells, k
z
has to be set to mn/l as determined by using the beam

function given in equation (2) for simply supported boundary conditions. According to
equation (6), it can be seen that for in"nite length cylindrical shells, there is a cut-o!
frequency at which the corresponding acoustic wavenumber k is equal to k

z
("mn/l)

for each vibration mode. Below this cut-o! frequency, the modal radiation e$ciency is
zero, and above this frequency, the modal radiation e$ciency increases to unity when the

acoustic wavenumber k is equal to the structural wavenumber k
s
("J(mn/l)2#(n/a)2). This

result is not obvious because if one uses in"nite #at plates as an analogy, the modal
radiation e$ciencies of in"nite length cylindrical shells would be expected to be zero when
k(k

s
due to the intercell cancellation. However, for cylindrical shells the structural wave

speed in the axial direction is faster than that in the circumferential direction due to
curvature e!ects below the ring frequency. Therefore, when the frequency increases, the
axial wave would catch up the acoustic wave much faster than the circumferential wave.
Hence, there is a frequency range within which the axial component of a vibration mode is
supersonic while the circumferential component is still subsonic. The modal radiation
e$ciency would continue to increase with frequency until both components are supersonic.
The frequency at which the axial component becomes supersonic is the cut-o! frequency of
this mode. Generally, the larger the number m, the higher the cut-o! frequency.

In order to examine the e!ects of the length of a cylindrical shell on its modal radiation
e$ciency, the modal radiation e$ciencies calculated using equation (6) are compared with
those obtained using equation (3) in Figures 2(a)}2(e) for "ve di!erent modes (2, 1), (2, 3),
(2, 5), (4, 3) and (4, 5) with di!erent l/a ratios respectively. It can be seen that for low l/a,
severe errors would occur from applying the results of in"nite length model, i.e., equation
(6). This result can be interpreted by analogy with "nite/in"nite plates. For "nite length
cylindrical shells, there are no cut-o! frequencies because the intercell cancellation does not
occur at the ends. Thus, the radiation e$ciency of a "nite length model is higher than the
in"nite model below and around the cut-o! frequency for the in"nite model. Around the
demarcation of subsonic and supersonic modes (k/k

s
"1), as the acoustic wave speed and

structural wave speed are almost the same, there should be more energy accumulated along
the in"nite length cylindrical shell than that along the "nite length model just like for #at
plates [13]. Consequently, the radiation e$ciency of an in"nite length model is higher than
that of a "nite length model in that region. All these results in Figure 2 show that the larger
the length/radius ratio (l/a), the smaller the di!erence between the two results given by
equations (3) and (6).

For a given axial mode number m (for example 2), as the circumferential mode number
n increases from 1 in Figure 2(a) to 3 in Figure 2(b), the length/radius ratio for good
agreement between in"nite and "nite length models decreases from l/a"20 for (2, 1) mode
to l/a"7 for (2, 3) mode. On the other hand, for a given circumferential mode number n (for
example 3), as the axial mode number m increases from 2 in Figure 2(b) to 4 in Figure 2(d),
the length/radius ratio for good agreement between in"nite and "nite length models
increases from l/a"7 for (2, 3) mode to l/a"14 for (4, 3) mode. Thus, the length/radius
ratio for good agreement between in"nite and "nite length shells decreases as the
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circumferential mode order n increases, and as the axial mode order m decreases.
Consequently, the condition for applying the results of an in"nite length model to a "nite
length cylindrical shell can be stated as

l

m

n

a
*Constant. (7)

Obviously, the larger the constant, the closer the two results. From Figure 2, this constant
has been estimated to be 10. As equations (3) and (6) indicate that the modal radiation
e$ciencies are only in#uenced by the length l, radius a, and mode numbers m, n, the
conclusion that (l/m)n/a*10 should apply to all circular cylindrical shells. Generally, when
Figure 2. Comparisons of the modal radiation e$ciencies of in"nite and "nite length cylindrical shells. (a)**
"nite model l/a"10; - - - - - - "nite model l/a"20; s in"nite model l/a"10; # in"nite model l/a"20; (b) **
"nite model l/a"3; - - - - - - "nite model l/a"7; s in"nite model l/a"3; # in"nite model l/a"7; (c)** "nite
model l/a"2; - - - - - - "nite model l/a"4; s in"nite model l/a"2; # in"nite model l/a"4; (d)** "nite model
l/a"7; - - - - - - "nite model l/a"14; s in"nite model l/a"7; # in"nite model l/a"14; (e) ** "nite model
l/a"4; - - - - - - "nite model l/a"8; s in"nite model l/a"4; # in"nite model l/a"8.



Figure 2. Continued.

RADIATION EFFICIENCY OF FINITE LENGTH SHELLS 831



832 C. WANG AND J. C. S. LAI
m increases, the areas of the &&edges'' and &&corners'' would decrease so that the modal
radiation e$ciency of a "nite structure would decrease approaching the results of an in"nite
length model. However, for "nite length cylindrical shells, increasing m not only would
reduce the radiation e$ciency, but also would increase the cut-o! frequency of the
corresponding in"nite length model. Thus, the di!erence between the results obtained using
an in"nite length model (equation (6)) and a "nite length model (equation (3)) become
greater as m increases. In fact, equation (7) basically implies that when the wavenumber in
the circumferential direction is much greater than that in the axial direction, the acoustic
behavior of a cylindrical shell is mainly determined by the wavenumber in the
circumferential direction. Under this condition, the length of a cylindrical shell is no longer
important, and the results of the two models would tend to be the same.

4. EFFECTS OF BOUNDARY CONDITIONS ON MODAL RADIATION EFFICIENCIES

According to equation (1), the modal radiation e$ciency depends on the spatial Fourier
transform of the mode shape in the axial direction. Basically, di!erent mode shapes c

m
(z)

would result in di!erent modal radiation e$ciencies. Since generally the mode shapes of
cylindrical shells in the axial direction are determined by the boundary conditions at both
ends, the e!ects of boundary conditions of the cylindrical shell on its modal radiation
e$ciencies are therefore of interest. In order to illustrate the e!ects of boundary conditions,
modal radiation e$ciencies obtained by using equations (1) and (4) for clamped}clamped
ends and equation (3) for simply supported ends for modes (1, 2), (2, 2), (4, 2) and (1, 8) are
compared in Figure 3 for l/a"1)5. It can be seen that the modal radiation e$ciencies of
the clamped}clamped shell are normally lower than those of the simply supported shell in
the region k/k

s
(m, n)(1. This is due to the e!ect of near "elds at the two ends. Generally,

for a clamped end, the vibration amplitude near the end would be smaller than that for
a simply supported end because of the additional zero bending moment condition. As
a result, in the subsonic region, the acoustic power radiated from a clamped}clamped shell,
which is acutally due to the radiation from the cells at both ends, would be smaller than that
from a simply supported shell, thus resulting in lower radiation e$ciency. Furthermore, it
can be observed that when m increases, the di!erences between the two boundary
conditions increase. This is because as m increases, the intercell cancellation for simply
supported condition is more complete so that the end e!ects for clamped condition become
more important. In the region k/k

s
(m, n)*1, all the modal radiation e$ciencies approach

unity as expected. Here, although only the clamped}clamped and simply supported
boundary conditions are examined, they have been demonstrated to a!ect the acoustic
behavior of a cylindrical shell. Hence, equation (1) generally has to be used for "nite length
cylindrical shells with di!erent boundary conditions.

It can be observed from Figure 3 that for the clamped}clamped boundary condition, and
k/k

s
(m, n)(1, the modal radiation e$ciency decreases as m increases. This is because modes

with small m are normally more e$cient in acoustic radiation than those with larger m.
It has been argued in section 3 that provided that (l/m)n/a*10, the circumferential waves

would dominate the overall acoustic performance and the length of a cylindrical shell is not
so important. Since the boundary conditions at both ends of a cylindrical shell only a!ect
the wavenumber (k

zm
) in the axial direction, the e!ects of boundary conditions can be

neglected provided that (l/m)n/a*10. In Figure 3(a), the radiation e$ciencies of mode (1, 8)
which satis"es equation (7) for simply supported and clamped boundary conditions are
plotted. It can be seen that the two curves agree with each other reasonably well. Thus, it
can be concluded that equation (7) is also a condition for which the e!ects of boundary
conditions are not important.



Figure 3. Comparisons of modal radiation e$ciencies of simply supported and clamped}clamped cylindrical
shells: l/a"1)5. (a)** simply supported mode (1, 2); - - - - - - simply supported mode (1, 8); s clamped mode (1, 2);
d clamped mode (1, 8); (b) ** simply supported mode (2, 2); - - - - - - simply supported mode (4, 2); s clamped
mode (2, 2); d clamped mode (4, 2).
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It should be pointed out that although sometimes the e!ects of boundary conditions on
modal radiation e$ciencies can be neglected, the e!ects of boundary conditions on the
modal-averaged radiation e$ciency cannot be neglected, because the di!erence of natural
frequencies due to di!erent boundary conditions would also cause some di!erence in the
modal-averaged radiation e$ciency, as has already been discussed by Wang and Lai [9].

5. RADIATION EFFICIENCY OF FINITE LENGTH CYLINDRICAL SHELLS
IN BENDING MOTION

A special case associated with the sound radiation from cylindrical shells is that the shell
is in beam-bending motion. The beam-bending motion refers to a cylindrical shell vibrating
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like a beam, which corresponds to the circumferential mode number n"1. Generally, it is
thought that a long cylindrical shell, such as water pipes, would vibrate in this manner.
Johnston and Barr [14] and Richards et al. [15] studied this particular case independently
by assuming that the cylindrical shell is in"nite in length and in bending motion over the
whole frequency band. A simple expression for the modal-averaged radiation e$ciency was
obtained by Richards et al. [15]:
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is the critical frequency for beam bending cylindrical shells, f
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the ring frequency of the shell. From equation (8), it can be seen that the radiation e$ciency
is zero below the critical frequency f

bc
, and increases to unity as the frequency increases to

around 6)5f
bc
. This equation has been veri"ed by experiments [15]. However, it should be

noted that a cylindrical shell would not be in beam-bending motion in the whole frequency
range because the vibration behavior of the shell changes with frequency. There must exist
a condition under which it can be applied with reasonable accuracy.

In reference [10], exact solutions of an in"nite length circular cylindrical shell for
longitudinal, torsional, and #exural vibrations were presented. It was shown that when the
#exural vibration dominates the overall behavior of an in"nite length circular cylindrical
shell, in the axial direction there are a series of #exural waves corresponding to di!erent
circumferential modes, in which the wave of the circumferential mode number n"1 is the
bending wave [10]. Figure 4 displays the variation of the non-dimensional frequency
parameter of the #exural waves with k

z
a for an in"nite length shell with a/h"5 and

circumferential mode numbers n"0, 1, 2 and 3. Here X is de"ned as the ratio of the
frequency to the ring frequency and k

z
is the axial wavenumber. It can be found that

corresponding to each of these waves, there is a cut-o! frequency (which is di!erent from
the cut-o! frequency discussed in section 3) above which the corresponding wave can occur.
As these cut-o! frequencies are actually the natural frequencies of the modes with zero axial
wavenumber for free}free cylindrical shells, a simple expression [16] can be used here:
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h/a) divides the higher order waves

from the beam bending wave in the frequency domain. But below f
vc2

, as the cut-o!
frequencies for wave n"0 and n"1 are all zero; n"0 wave would always occur in
addition to bending modes even at low frequencies. However, for a given frequency, as the
axial wavenumber for wave n"0 is much smaller than that of wave n"1 as shown in
Figure 4, the e!ect of wave n"0 might be small so that the bending wave would dominate
the behavior of the cylindrical shell. Actually Cremer et al. [12] showed that below the
cut-o! frequency of n"2, the point input impedance of an in"nite length cylindrical shell
takes the form of an equivalent beam in bending motion. This result shows that for an
in"nite length cylindrical shell, below f

vc2
, it can be simply treated as a beam in the

corresponding vibration and acoustics analysis.
For "nite length circular cylindrical shells, however, the case is di!erent. According to

linear vibration theory, the vibration response of a structure with "nite dimensions is the



Figure 4. Non-dimensional frequency X of #exural waves versus k
z
a for an in"nite length shell with a/h"5.
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superposition of all the vibration modes. At frequencies well below the "rst natural
frequency of the structure, the vibration response is dominated by the behavior of the "rst
mode. Therefore, it can be expected that for a "nite length circular cylindrical shell with
both ends free, if there is no vibration mode below f

vc2
, the behavior of the shell at low

frequencies is mostly dependent on the behavior of the mode n"2, which obviously cannot
be treated as a beam at low frequencies. Only when the cylindrical shell is long enough that
bending modes occur below f

vc2
, could the cylindrical shell behave like a beam at low

frequencies. To obtain a quantitative criterion, a cylindrical shell with two ends clamped is
taken as an example. The wavenumber of the "rst bending mode in the axial direction can
be approximately written as

k
z
+

1)5n
l

. (10)

The relationship between the frequency and wavenumber for the bending wave is [13]
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By using equations (9)}(11), the condition for the natural frequency of the "rst bending
mode being much smaller than f
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Equation (12) indicates that only when the dimensions of a "nite length cylindrical shell
satisfy this relationship, the low-frequency behavior of the cylindrical shell would be
dominated by the bending modes. As the length becomes longer, there would be more
bending modes below f

vc2
, and the results obtained by the beam model would be more

accurate. Since the natural frequencies of a clamped}clamped cylindrical shell are greater
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than those of the shell with other boundary conditions, equation (12) should also apply for
other boundary conditions. Actually, for a cylindrical shell in bending motion, combining
equations (11), (9) with (7), a frequency ( f

l
) below which the in"nite length model could be

used for corresponding acoustic analysis can be obtained:

f
l
(

n2f
r

Constant
. (13)

It can be seen that by choosing the constant as 10, this frequency is always greater than f
vc2

.
Therefore, for a "nite length cylindrical shell in bending motion, equation (8) can be used
directly without taking the e!ects of boundary conditions into account.
Figure 5. Radiation e$ciencies of "nite length circular cylindrical shells. (a) a"42 mm; h"4 mm;
f
vc2

"1)4 kHz; f
c
"3 kHz; 2naJa/h"0)8; ** Richards results; ) ) ) ) ) ) ) l"0)5 m; - - - - - - l"0)8 m; }} } }

l"1)1 m; (b) a"19)5 mm; h"3 mm, f
vc2

"5 kHz; f
c
"4 kHz; 2naJa/h"0)3; ** Richards results; ) ) ) ) ) ) )

l"0)2 m; - - - - - - l"0)4 m; - - - - - - l"0)6 m; } } } } l"0)8 m.
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To verify the above result, two groups of steel circular cylindrical shells of di!erent
radius/thickness ratios were investigated. By using equations (1) and (5), the radiation
e$ciencies of the shells with di!erent lengths have been calculated and compared with
Richards' results in Figure 5. It can be seen that as the length of the shell increases, the
radiation e$ciencies of "nite length cylindrical shells approach Richards' results. Also,
when the cut-o! frequency for n"2 is lower than the critical frequency (Figure 5(a)),
Richards' results only apply below f

vc2
. When f

vc2
is greater than the critical frequency

(Figure 5(b)), Richards' results can be used for the whole frequency range. However, if the
length of the shell does not satisfy equation (12), the shell cannot be treated as a beam.

6. CONCLUSIONS

The end e!ects of a "nite length cylindrical shell on the modal radiation e$ciencies have
been discussed in this paper. It is found that generally the boundary conditions a!ect the
modal radiation e$ciencies very much in the subsonic region of the modes. However, if a
vibration mode (m, n) of a circular cylindrical shell with length l and radius a satis"es the
relationship, (l/m)n/a*10, the end e!ects could be neglected, and thus the corresponding
modal radiation e$ciency can be predicted by using an in"nite length model. Furthermore,
when the length (l ) of a circular cylindrical shell with radius a and thickness h is much

greater than 2naJa/h, the results of Richards et al. [15] for the modal-averaged radiation
e$ciency of a cylindrical shell in bending motion can apply below the vibration cut-o!
frequency of mode n"2. For a "nite length cylindrical shell in bending motion, end e!ects
are negligible.
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